コンテンツにスキップ

クイックスタート

リアルタイム エージェントは、OpenAI の Realtime API を使用して AI エージェントとの音声会話を可能にします。このガイドでは、最初のリアルタイム音声エージェントの作成手順を説明します。

ベータ機能

リアルタイム エージェントはベータ版です。実装の改善に伴い、破壊的な変更が発生する可能性があります。

前提条件

  • Python 3.9 以上
  • OpenAI API キー
  • OpenAI Agents SDK の基本的な理解

インストール

まだの場合は、OpenAI Agents SDK をインストールします:

pip install openai-agents

最初のリアルタイム エージェントの作成

1. 必要なコンポーネントをインポート

import asyncio
from agents.realtime import RealtimeAgent, RealtimeRunner

2. リアルタイム エージェントを作成

agent = RealtimeAgent(
    name="Assistant",
    instructions="You are a helpful voice assistant. Keep your responses conversational and friendly.",
)

3. ランナーをセットアップ

runner = RealtimeRunner(
    starting_agent=agent,
    config={
        "model_settings": {
            "model_name": "gpt-realtime",
            "voice": "ash",
            "modalities": ["audio"],
            "input_audio_format": "pcm16",
            "output_audio_format": "pcm16",
            "input_audio_transcription": {"model": "gpt-4o-mini-transcribe"},
            "turn_detection": {"type": "semantic_vad", "interrupt_response": True},
        }
    }
)

4. セッションを開始

# Start the session
session = await runner.run()

async with session:
    print("Session started! The agent will stream audio responses in real-time.")
    # Process events
    async for event in session:
        try:
            if event.type == "agent_start":
                print(f"Agent started: {event.agent.name}")
            elif event.type == "agent_end":
                print(f"Agent ended: {event.agent.name}")
            elif event.type == "handoff":
                print(f"Handoff from {event.from_agent.name} to {event.to_agent.name}")
            elif event.type == "tool_start":
                print(f"Tool started: {event.tool.name}")
            elif event.type == "tool_end":
                print(f"Tool ended: {event.tool.name}; output: {event.output}")
            elif event.type == "audio_end":
                print("Audio ended")
            elif event.type == "audio":
                # Enqueue audio for callback-based playback with metadata
                # Non-blocking put; queue is unbounded, so drops won’t occur.
                pass
            elif event.type == "audio_interrupted":
                print("Audio interrupted")
                # Begin graceful fade + flush in the audio callback and rebuild jitter buffer.
            elif event.type == "error":
                print(f"Error: {event.error}")
            elif event.type == "history_updated":
                pass  # Skip these frequent events
            elif event.type == "history_added":
                pass  # Skip these frequent events
            elif event.type == "raw_model_event":
                print(f"Raw model event: {_truncate_str(str(event.data), 200)}")
            else:
                print(f"Unknown event type: {event.type}")
        except Exception as e:
            print(f"Error processing event: {_truncate_str(str(e), 200)}")

def _truncate_str(s: str, max_length: int) -> str:
    if len(s) > max_length:
        return s[:max_length] + "..."
    return s

完全な例

動作する完全なサンプルコードは次のとおりです:

import asyncio
from agents.realtime import RealtimeAgent, RealtimeRunner

async def main():
    # Create the agent
    agent = RealtimeAgent(
        name="Assistant",
        instructions="You are a helpful voice assistant. Keep responses brief and conversational.",
    )
    # Set up the runner with configuration
    runner = RealtimeRunner(
        starting_agent=agent,
        config={
            "model_settings": {
                "model_name": "gpt-realtime",
                "voice": "ash",
                "modalities": ["audio"],
                "input_audio_format": "pcm16",
                "output_audio_format": "pcm16",
                "input_audio_transcription": {"model": "gpt-4o-mini-transcribe"},
                "turn_detection": {"type": "semantic_vad", "interrupt_response": True},
            }
        },
    )
    # Start the session
    session = await runner.run()

    async with session:
        print("Session started! The agent will stream audio responses in real-time.")
        # Process events
        async for event in session:
            try:
                if event.type == "agent_start":
                    print(f"Agent started: {event.agent.name}")
                elif event.type == "agent_end":
                    print(f"Agent ended: {event.agent.name}")
                elif event.type == "handoff":
                    print(f"Handoff from {event.from_agent.name} to {event.to_agent.name}")
                elif event.type == "tool_start":
                    print(f"Tool started: {event.tool.name}")
                elif event.type == "tool_end":
                    print(f"Tool ended: {event.tool.name}; output: {event.output}")
                elif event.type == "audio_end":
                    print("Audio ended")
                elif event.type == "audio":
                    # Enqueue audio for callback-based playback with metadata
                    # Non-blocking put; queue is unbounded, so drops won’t occur.
                    pass
                elif event.type == "audio_interrupted":
                    print("Audio interrupted")
                    # Begin graceful fade + flush in the audio callback and rebuild jitter buffer.
                elif event.type == "error":
                    print(f"Error: {event.error}")
                elif event.type == "history_updated":
                    pass  # Skip these frequent events
                elif event.type == "history_added":
                    pass  # Skip these frequent events
                elif event.type == "raw_model_event":
                    print(f"Raw model event: {_truncate_str(str(event.data), 200)}")
                else:
                    print(f"Unknown event type: {event.type}")
            except Exception as e:
                print(f"Error processing event: {_truncate_str(str(e), 200)}")

def _truncate_str(s: str, max_length: int) -> str:
    if len(s) > max_length:
        return s[:max_length] + "..."
    return s

if __name__ == "__main__":
    # Run the session
    asyncio.run(main())

設定オプション

モデル設定

  • model_name: 利用可能なリアルタイムモデルから選択 (例: gpt-realtime)
  • voice: 音声を選択 (alloy, echo, fable, onyx, nova, shimmer)
  • modalities: テキストまたは音声を有効化 (["text"] または ["audio"])

音声設定

  • input_audio_format: 入力音声の形式 (pcm16, g711_ulaw, g711_alaw)
  • output_audio_format: 出力音声の形式
  • input_audio_transcription: 文字起こしの設定

ターン検出

  • type: 検出方法 (server_vad, semantic_vad)
  • threshold: 音声活動のしきい値 (0.0–1.0)
  • silence_duration_ms: 発話終了を検出する無音時間
  • prefix_padding_ms: 発話前の音声パディング

次のステップ

認証

環境に OpenAI API キーが設定されていることを確認してください:

export OPENAI_API_KEY="your-api-key-here"

またはセッション作成時に直接渡してください:

session = await runner.run(model_config={"api_key": "your-api-key"})